
Catena: A Scheduling System for Microsecond-Level Microservice DAGs
†Ryan Kosta (rkosta@ucsd.edu) Amy Ousterhout (aousterhout@ucsd.edu) Yiying Zhang (yiying@ucsd.edu)

UC San Diego †Student

Modern web services such as Twitter and Netflix are com-
posed of many small tasks, known as microservices. This
approach enables each microservice to scale independently
and allows for parallel development of components. A given
end-to-end service is represented as a DAG, where each mi-
croservice is a vertex, and calls between microservices are
edges.

The service time of microservices is much shorter than that
of traditional services, within the magnitude of microseconds.
At this timescale, preemption overhead is too costly relative
to task length. As a result, tasks suffer dispersion-based head-
of-line blocking, where a long task blocks many shorter tasks
from running. Tasks are so short, hardware factors such as
cache misses cause runtime unpredictability. Since most mi-
croservices call other microservices, a burst in a service causes
fluctuations in demand for subsequent services in the DAG.

Due to the frequent fluctuations in service demand, it is
common to allocate resources based on the peak demand,
resulting in resource wastage during periods of lower demand.
Alternatively, resources can be allocated for average demand,
causing overloads during bursts. However, a single overloaded
microservice often degrades the performance of the entire ap-
plication. As DAGs of interdependent microservices become
longer and more intricate, the probability of any service in
the DAG experiencing overload increases. This poses the re-
search problem of how to minimize overload across an entire
application without over-allocating resources.

Overload control techniques [1] regulate the ingress rate
of incoming requests. This ensures a service’s execution rate
is not degraded due to an excess of requests, and regulates
throughput allowing for tight resource allocations. However,
these systems are incompatible with fine-grained resource
reallocation, leading to lower utilization in multi-tenant sce-
narios.

Scheduling techniques [2] quickly adjust resource alloca-
tions to respond to load variance. They collocate multiple
services and quickly adjust resource allocations to respond
to load demands of the different services, avoiding failure
of requests. However, since they frequently adjust core allo-
cations, their processing rate heavily fluctuates, intensifying
load spikes for later microservices. In long DAGs, this causes
cascading failure.

We propose Catena, a new RPC system that allows co-
location of latency-critical microservices whilst achieving
low tail latency and high server utilization. We achieve this by
creating a credit system that supports microsecond schedul-
ing, and using knowledge of microservice dependencies to

resolve resource contention when it occurs. Our credit system
allocates credits per service request, controlling the request
ingress rate based on the number of outstanding credits. We
allocate credits using a dynamic credit multiplier which is
multiplied with the number of cores allocated to a service to
decide how many outstanding credits are distributed.

Catena’s RPC system is built into the network layer of
Shenango [2] to explicitly co-optimize with the existing
scheduling system and utilize kernel-bypass networking.
Catena uses a tiered approach to achieve both high throughput
and low latency when vertical autoscaling compute resources.

In the first tier, we measure queuing delay and adjust the
credit multiplier via Additive Increase Multiplicative De-
crease if delay is not within target latency range, similar to
Breakwater [1]. Since the request queue can handle a small
excess of requests, minor credit mispredictions are acceptable.
Therefore, we use more aggressive parameters to achieve
faster convergence.

In the second tier, we measure CPU utilization and adjust
core allocations via Additive Increase Additive Decrease if
CPU utilization is not within the target range. We use less
aggressive parameters to avoid core thrashing and starvation
between services.

Allocating cores in proportion to CPU utilization achieves
a much more stable request throughput then explicit delay-
based core allocation, quelling burstiness that could lead to
cascading failure. At the same time, the credit system quickly
reacts to latency violations to ensure low tail latency.

While microsecond scheduling quells small bursts in re-
source demands on a given server, if co-located services burst
concurrently then resource contention occurs. Traditionally,
horizontal autoscaling is utilized, but deploying a new in-
stance would take much longer then a cascading service fail-
ure would take to develop.

Catena proposes using knowledge of the DAG to solve
resource contention. Since CPU allocation is dependent on
latency targets, if a service cannot allocate enough CPUs,
it can raise its latency target and request that less resource-
constrained dependent services in the DAG(s) proportionally
decrease their latency target so the end-to-end service latency
remains unchanged.
References
[1] I. Cho, A. Saeed, J. Fried, S. J. Park, M. Alizadeh, and A. Belay. Overload control

for µs-scale RPCs with breakwater. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20), Nov. 2020.

[2] A. Ousterhout, J. Fried, J. Behrens, A. Belay, and H. Balakrishnan. Shenango:
Achieving high CPU efficiency for latency-sensitive datacenter workloads. In 16th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 19),
2019.



State of the Art

Catena: A Scheduling System for

Microsecond-Level Microservice DAGs
Ryan Kosta (student),

Amy Ousterhout, Yiying Zhang

Idea: DAG-Aware

Distributed

Autoscaling

GoalsModern Microservices
Traditional µs Scheduling:

● Constantly adjusts core allocations causing

processing rate fluctuations and traffic bursts

● With a longer DAG, the burst effect multiplies

Traditional Overload Control:

● Unable to respond to quick changes in resource

allocations

Example: DAG-Aware

Idea: Throughput-Aware

Vertical Autoscaling

[1] I. Cho, A. Saeed, J. Fried, S. J. Park, M. Alizadeh, and A. Belay. Overload control

for μs-scale RPCs with breakwater. In OSDI 20, Nov. 2020.

[2] A. Ousterhout, et al. Shenango: Achieving high CPU efficiency for

latency-sensitive datacenter workloads. In NSDI 2019.

Bursty Demand and Performance:

● Demand varies heavily on the µs scale

● HOL blocking causes bursts in task

completion

● Large load spikes can lead to:

○ Adverse traffic effects

○ Cascading failure

● Respond to µs-level load

variance

● Tightly pack many

latency-critical µs microservices

● Handle resource contention of

microservices

● Multi-Tiered Optimization Approach

● Assign credits based on multiplier of cores allocated

● Optimize for Tail Latency: Credit Multiplier

○ AIMD algo [1] based on measured queue delay

○ More Aggressive: Allows for faster convergence

● Optimize for Resource Utilization: Core allocation

○ AIAD algorithm based on measured CPU util

○ Less aggressive: avoids CPU starvation/thrashing

● Use DAG properties to dynamically

adjust allocations

● Handle µbursts (10s µs) of resource

contention
■ Without violating SLO guarantees

■ Too fine-grained for horizontal

autoscaling

1. Blue has queue buildup, steals red’s core

2. Red is now under resource constraints, so it
a. Increases its latency target (reducing resource requirements)

b. Asks service in red DAG to decrease its latency target proportionally

3. Other service in Red DAG
a. Decreases its latency target (increasing resource requirements)

b. Allocates a new core

Example:

Throughput-Aware

● Arrival Rate: Poisson centered around mean

● Processing Time: Bimodal (90% 5µs, 10% 55µs)

● Microservices: 3 in linear DAG

● Cores: 2 statically allocated cores + burst cores

Prototype
● RPC protocol built into Shenango’s[2] kernel bypass networking layer

● Throughput-Aware Vertical Autoscaling via credit control system

…


